盲源分离是生物医学、海洋环境、声学监测和军事侦察领域中的研究热点。传统的盲源分离法,要求观测信号的数目不少于源信号数目,而在实际应用中受造价和安装条件等因素限制,常使观测信号的数目远少于源信号数目,从而传统盲源分离法很难恢复出源信号。因此,如何凭借单通道混合信号恢复出多通道源信号是数学领域中的一个具有挑战性的课题。 本书系统地介绍了单通道盲源分离理论、单通道混合信号的模型建立、单通道盲源分离算法的实现。首先,依据各种信号的统计特性、时频域特性和非线性特性,将多路源信号线性混合为单路信号并对其分类建模;随后提出一系列时频域相结合的单通道盲源分离算法;最后,针对已知的单通道混合信号模型及参数自适应分离并恢复多路源信号。这些算法可提高源信号复原性能,具有算法复杂度低、收敛速度快及鲁棒特性强的特点,对单通道盲源分离的理论和算法研究具有重要的科学和应用价值。
单通道线性混合信号盲源分离算法研究 EPUB, PDF, TXT, AZW3, MOBI, FB2, DjVu, Kindle电子书免费下载。