《沿Ricci流的Sobolev不等式及热核》主要讲解Sobolev不等式及其在研究流形,特别是Ricci流时的应用。其目的之一是提供Riemann流形上几何分析一个引论。另一个目的是以Sobolev不等式及热核估计为工具来研究Ricci流,特别是在有手术的情形。这个研究课题近来得到很多人的关注。作者尽力以简明的方式陈述其主要的结果和证明方法。《沿Ricci流的Sobolev不等式及热核》分为三部分。 第一部分,我们介绍Euclidean空间中基本的Sobolev不等式。第二部分我们解读紧,或非紧Riemann流形上的 Sobolev嵌入,在这些流形上的度量是固定的。第三部分我们先刻画 Hamilton Ricci流的几个基本结果,然后将介绍关于Poincar\'e猜想的研究。
北京大学现代数学丛书:沿Ricci流的Sobolev不等式及热核 EPUB, PDF, TXT, AZW3, MOBI, FB2, DjVu, Kindle电子书免费下载。